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Abstract. In this paper, the behavior of a Griffith crack in a piezoelectric material under anti-plane shear loading
is investigated by using the non-local theory for impermeable crack surface conditions. By using the Fourier
transform, the problem can be solved with two pairs of dual integral equations. These equations are solved using
Schmidt method. Numerical examples are provided. Contrary to the previous results, it is found that no stress and
electric displacement singularity is present at the crack tip.
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1. Introduction

It is well known that piezoelectric materials produce an electric field when deformed, and
undergo deformation when subjected to an electric field. The coupling nature of piezoelectric
materials has attracted wide applications in electric-mechanical and electric devices, such as
electric-mechanical actuators, sensors and structures. When subjected to mechanical and elec-
trical loads in service, these piezoelectric materials can fail prematurely due to their brittleness
and presence of defects or flaws produced during their manufacturing process. Therefore, it
is important to study the electro-elastic interaction and fracture behaviors of piezoelectric
materials.

Many studies have been made on the electro-elastic fracture mechanics based on the mod-
eling and analyzing of one crack in the piezoelectric materials (see, for example, Deeg, 1980;
Pak, 1990, 1992; Sosa, 1992; Suo et al., 1992; Park and Sun, 1995a,b; Zhang and Tong,
1996; Zhang et al., 1998; Gao et al., 1997; Wang, 1992). The problem of the interacting fields
among multiple cracks in a piezoelectric materials has been studied by Han (Han et al., 1999).
In Han’s paper, the crack is treated as a continuous distributed dislocations with the density
function to be determined according to the conditions of external loads and crack surface.
Most recently, Chen and Karihaloo (1999) considered an infinite piezoelectric ceramic with
impermeable crack-face boundary condition under arbitrary electro-mechanical impact. Sosa
and Hhutoryansky (1999) investigated the response of piezoelectric bodies disturbed by in-
ternal electric sources. The impermeable boundary condition on the crack surface was widely
used in the works (Pak, 1990, 1992; Suo et al., 1992; Suo, 1993; Park and Sun, 1995a,b;
Chen and Karihaloo, 1999). However, these solutions contain stress and electric displacement
singularity. This is not reasonable according to the physical nature. For overcoming the stress
singularity in the classical elastic theory, Eringen (Eringen et al., 1977a, 1978, 1979) used the
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non-local theory to discuss the state of stress near the tip of a sharp line crack in an elastic
plate subject to uniform tension, shear and anti-plane shear. These solutions did not contain
any stress singularity, thus resolving a fundamental problem that persisted over many years.
This enables us to employ the maximum stress hypothesis to deal with fracture problems in a
natural way.

In the present paper, the behavior of a Griffith crack subjects to anti-plane shear in piezo-
electric materials is investigated by using the non-local theory for impermeable crack surface
conditions. The traditional concept of linear elastic fracture mechanics and the non-local
theory are extended to include the piezoelectric effects. Fourier transform is applied and a
mixed boundary value problem is reduced to two pairs of dual integral equations. In solving
the dual integral equations, the crack surface displacement and electric potential are expanded
in a series using Jacobi polynomials and Schmidt method (Morse et al., 1958) is used. This
process is quite different from that adopted in references (Han et al., 1999; Deeg, 1980; Pak,
1990, 1992; Sosa, 1992; Suo et al., 1992; Par and Sun, 1995a,b; Zhang and Tong, 1996; Zhang
et al., 1998; Gao et al., 1997; Wang, 1992; Eringen et al., 1977a, 1978, 1979). As expected, the
solution in this paper does not contain the stress and electric displacement singularity at the
crack tip, thus clearly indicating the physical nature of the problem, namely, in the vicinity of
the geometrical discontinuities in the body, the non-local intermolecular forces are dominant.
For such problems, therefore, one must resort to theories incorporating non-local effects, at
least in the neighborhood of the discontinuities.

2. Basic equations of non-local piezoelectric materials

For the anti-plane shear problem, the basic equations of linear, homogeneous, isotropic, non-
local piezoelectric materials, with vanishing body force are (see e.g. Eringen, 1979; Shindo,
Narita and Tanakd, 1996)

∂τxz

∂x
+ ∂τyz

∂y
= 0, (1)

∂Dx

∂x
+ ∂Dy

∂y
= 0, (2)

τkz(X) =
∫
V

[c′
44(|X′ −X|)w,k(X′)+ e′

15(|X′ −X|)φ,k(X′)] dV (X′), (3)

Dk(X) =
∫
V

[e′
15(|X′ − X|)w,k(X′)− ε′

11(|X′ −X|)φ,k(X′)] dV (X′), (4)

where the only difference from classical elastic theory and the pizoelectric theory is in the
stress and the electric displacement constitutive Equations (3) and (4) in which the stress
τzk(X) and the electric displacement Dk(X) at a point X depends on w,k(X) and φ,k(X), at
all points of the body. w and φ are the mechanical displacement and electric potential. For
homogeneous and isotropic piezoelectric materials there exist only three material parameters,
c′

44(|X′ −X|), e′
15(|X′ −X|) and ε′

11(|X′ −X|) which are functions of the distance |X′ −X|.
The integrals in (3) and (4) are over the volume V of the body enclosed within a surface ∂V .

As discussion in the papers (see, e.g., Eringen, 1974, 1977b), it can be assumed in the form
of c′

44(|X′ − X|), e′
15(|X′ − X|) and ε′

11(X
′ − X|) for which the dispersion curves of plane

elastic waves coincide with those known in lattice dynamics. Among several possible curves
the following has been found to be very useful
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(c′
44, e

′
15, ε

′
11) = (c44, e15, ε11)α(|X′ − X|), (5)

α(|X′ −X|) = α0 exp[−(β/a)2(X′ −X)(X′ −X)], (6)

where β is a constant, a is the lattice parameter. c44, e15, ε11 are the shear modulus, piezoelec-
tric coefficient and dielectric parameter, respectively. α0 is determined by the normalization∫

V

α(|X′ −X|) dV (X′) = 1. (7)

In the present work, the non-local elastic moduli was given by (5) and (6). Substituting (6)
into (7), it can be obtained, in two-dimensional space,

α0 = 1

π
(β/a)2. (8)

Substitution of Equations (5) and (6) into Equations (3) and (4) yields

τkz(X) =
∫
V

α(|X′ −X|)σkz(X′) dV (X′), (9)

Dk(X) =
∫
V

α(|X′ −X|)Dc
k(X

′) dV (X′), (10)

where

σkz = c44w,k + e15φ,k, (11)

Dc
k = e15w,k − ε11φ,k. (12)

The expressions (11) and (12) are the classical constitutive equations.

3. The crack model

Consider an infinite piezoelectric body containing a Griffith impermeable crack of length 2l
along the x-axis. The piezoelectric boundary-value problem for anti-plane shear is consid-
erably simplified if we consider only the out-of-plane displacement and the in-plane elastic
fields. The plate is subjected to a constant stress τyz = τ0, and a constant electric displacement
Dy = D0 along the surface of the cracks, see Figure 1. As discussion in Narita’s (Narita
and Shindo, 1998), Shindo’s (Shindo, 1996), Yu’s (Yu, 1998) and Eringen’s (Eringen, 1979)
references, the boundary conditions of the present problem are:

τyz(x, 0) = τ0, |x| ≤ l, (13)

Dy(x, 0) = D0, |x| ≤ l, (14)

w(x, 0) = φ(x, 0) = 0, |x| > l, (15)

w(x, y) = φ(x, y) = 0 for (x2 + y2)1/2 → ∞. (16)

Substituting Equations (9) and (10) into Equations (1) and (2), respectively, using Green–
Gauss theorem, it can be obtained (see, e.g., Eringen, 1979):
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Figure 1. Crack in a piezoelectric material body under anti-plane shear.

∫∫
V

α(|x′ − x|, |y′ − y|)[c44∇2w(x′, y′)+ e15∇2φ(x′, y′)] dx′ dy′

−
∫ l

−l
α(|x′ − x|, 0)[σyz(x′, 0)] dx′ = 0, (17)

∫∫
V

α(|x′ − x|, |y′ − y|)[e15∇2w(x′, y′)− ε11∇2φ(x′, y′)] dx′ dy′

−
∫ l

−l
α(|x′ − x|, 0)[Dc

y(x
′, 0)] dx′ = 0, (18)

where the boldface bracket indicates a jump at the crack line. ∇2 = ∂2/∂x2+∂2/∂y2 is the two
dimensional Laplace operator. Because of the assumed symmetry in geometry and loading, it
is sufficient to consider the problem for 0 ≤ x ≤ ∞, 0 ≤ y ≤ ∞ only. Under the applied
anti-plane shear load on the unopened surfaces of the crack, the displacement field and the
electric displacement possess the following symmetry regulations

w(x,−y) = −w(x, y), φ(x,−y) = −φ(x, y). (19)

Using Equation (19), we find that

[σyz(x, 0)] = 0, (20)

[Dc
y(x, 0)] = 0. (21)

Hence, the line integrals in (17) and (18) vanish. By taking the Fourier transform of (17)
and (18) with respect to x′, it can be shown that the general solutions of (17) and (18) are
identical to that of

c44

[
d2w(s, y)

dy2
− s2w(s, y)

]
+ e15

[
d2φ(s, y)

dy2
− s2φ(s, y)

]
= 0, (22)

e15

[
d2w(s, y)

dy2
− s2w(s, y)

]
− ε11

[
d2φ(s, y)

dy2
− s2φ(s, y)

]
= 0, (23)

almost everywhere. Here a superposed bar indicates the Fourier transform, e.g.
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f (s, y) =
∫ ∞

0
f (x, y) exp(isx) dx.

The general solutions of Equations (22) and (23) (y ≥ 0) satisfying (16) are, respectively:

w(x, y) = 2

π

∫ ∞

0
A(s)e−sy cos(xs) ds,

(24)

φ(x, y) − e15

ε11
w(x, y) = 2

π

∫ ∞

0
B(s)e−sy cos(xs) ds,

where A(s), B(s) are to be determined from the boundary conditions.
The stress field and the electric displacement, according to (9) and (10), are given by,

respectively

τyz(x, y) = 2

π

∫ ∞

0
[−µsA(s) − e15sB(s)] ds

∫ ∞

0
dy′

∫ ∞

−∞
[α(|x′ − x|, |y′ − y|)

+α(|x′ − x|, |y′ + y|)]e−sy ′
cos(sx′) dx′, (25)

Dy(x, y) = 2

π

∫ ∞

0
ε11sB(s) ds

∫ ∞

0
dy′

∫ ∞

−∞
[α(|x′ − x|, |y′ − y|)

+α(|x′ − x|, |y′ + y|)]e−sy ′
cos(sx′) dx′. (26)

Substituting for α from (6), according to the reference (see, e.g., Eringen, 1979) and the
boundary conditions (13)–(15), it can be obtained

2

π

∫ ∞

0
sA(s) erfc(εs) cos(sx) ds = − 1

µ

(
τ0 + e15D0

ε11

)
, |x| ≤ l, (27)

2

π

∫ ∞

0
A(s) cos(sx) ds = 0, |x| > l (28)

and

2

π

∫ ∞

0
sB(s) erfc(εs) cos(sx) ds = D0

ε11
, |x| ≤ l, (29)

2

π

∫ ∞

0
B(s) cos(sx) ds = 0, |x| > l, (30)

where

ε = a

2β
, erfc(z) = 1 −!(z), !(z) = 2√

π

∫ z

0
exp(−t2) dt, µ = c44 + e2

15

ε11
.

Since the only difference between the classical and the non-local equations is in the introduc-
tion of the function erfc(εs), it is logical to utilize the classical solution to convert the system
(27)–(30) to an integral equation of the second kind which is generally better behaved. For
a = 0, then erfc(εs) = 1 and Equations (27)–(30) reduce to the dual integral equations for the
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same problem in classical piezoelectric materials. To determine the unknown function A(s)
and B(s), the dual-integral equations (27)–(30) must be solved.

4. Solution of the dual integral equation

The dual integral equations (27)–(30) can not be transformed into the second Fredholm in-
tegral equation (Eringen, 1979), because the kernel of the second kind Fredholm integral
equation in the paper of Eringen (1979) is divergent. The kernel of the second kind Fredholm
integral equation in Eringen’s (1979) paper can be written as follows:

L(x, u) = (xu)1/2
∫ ∞

0
tk(ε′t)J0(xt)J0(ut) dt, 0 ≤ x, u ≤ 1,

where Jn(x) is the Bessel function of order n.

k(ε′t) = −!(ε′t), lim
t→∞ k(ε

′t) �= 0 for ε′ = a

2βl
�= 0,

J0(x) ≈
√

2

πx
cos(x − 1

4π) for x � 0.

The limit of tk(ε′t)J0(xt)J0(ut) is unequal to zero for t → ∞. So the kernel L(x, u) in
Eringen’s paper is divergent (see, e.g., Eringen, 1979). Of course, the dual integral equations
can be considered to be a single integral equation of the first kind with a discontinuous kernel
(see, e.g., Eringen, 1977a). It is well-known in the literature that integral equations of the
first kind are generally ill-posed in sense of Hadamard, i.e., small perturbations of the data
can yield arbitrarily large changes in the solution. This makes the numerical solution of such
equations quite difficult. For overcoming the difficult, the Schmidt method (Morse et al., 1958)
is used to solve the dual-integral equations (27)–(30). The displacement w and the electric
potential φ can be represented by the following series:

w(x, 0) =
∞∑
n=1

anP
(1/2,1/2)
2n−1

(x
l

) (
1 − x2

l2

)1/2

, for − l ≤ x ≤ l, y = 0, (31)

w(x, 0) = 0, for |x| > l, y = 0, (32)

φ(x, 0) =
∞∑
n=1

bnP
(1/2,1/2)
2n−1

(x
l

) (
1 − x2

l2

)1/2

, for − l ≤ x ≤ l, y = 0, (33)

φ(x, 0) = 0, for |x| > l, y = 0, (34)

where an and bn are unknown coefficients to be determined and P
(1/2,1/2)
n (x) is a Jacobi

polynomial (Gradshteyn and Ryzhik, 1980). The Fourier transformation of Equations (31)
and (33) is (Erdelyi, 1954)

A(s) = w(s, 0) =
∞∑
n=1

anBn
1

s
J2n−1(sl), (35)
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B(s) = φ(s, 0)− e15

ε11
w(s, 0) =

∞∑
n=1

(
bn − e15

ε11
an

)
Bn

1

s
J2n−1(sl), (36)

Bn = 2
√
π(−1)n−1)(2n− 1

2 )

(2n − 2)! , (37)

where )(x) and Jn(x) are the Gamma and Bessel functions, respectively.
Substituting Equations (35) and (36) into Equations (27)–(30), respectively, Equations (28)

and (30) can be automatically satisfied, respectively. Then the remaining equations (27) and
(29) reduce to the form, respectively.

∞∑
n=1

anBn

∫ ∞

0
erfc(εs)J2n−1(sl) cos(sx) ds = − π

2µ
τ0(1 + λ), (38)

∞∑
n=1

(
bn − e15

ε11
an

)
Bn

∫ ∞

0
erfc(εs)J2n−1(sl) cos(sx) ds = πD0

2ε11
, (39)

where

λ = e15D0

ε11τ0
.

From Equations (38) and (39), it can be shown that the unknown coefficients an and bn have
relation as following:

bn =
(
e15

ε11
− D0µ

ε11T0

)
an, T0 = τ0(1 + λ).

For a large s, the integrands of Equations (38) and (39) almost decrease exponentially. So
the semi-infinite integral in Equations (38) and (39) can be evaluated numerically by Filon’s
method (see, e.g., Amemiya et al., 1969). Equations (38) and (39) can now be solved for the
coefficients an and bn by the Schmidt method (Morse et al., 1958). For brevity, Equation (38)
can be rewritten as

∞∑
n=1

anEn(x) = U(x),l < x < l, (40)

where En(x) and U(x) are known functions and coefficients an are unknown and will be
determined. A set of functions Pn(x) which satisfy the orthogonality condition∫ l

−l
Pm(x)Pn(x) dx = Nnδmn, Nn =

∫ l

−l
P 2
n (x) dx (41)

can be constructed from the function, En(x), such that

Pn(x) =
n∑
i=1

Min

Mnn

Ei(x), (42)

where Mij is the cofactor of the element dij of Dn, which is defined as
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Table 1. Values of an/(πτ0/2µ) for
a/2βl = 0.0005

n an/(πτ0/2µ)

1 −0.318698E+00

2 −0.127109E−01

3 0.708155E−02

4 0.164376E−02

5 0.127016E−02

6 −0.132851E−03

7 −0.570583E−04

8 −0.981545E−04

9 −0.106541E−04

10 −0.582841E−05

Dn =




d11, d12, d13, . . . , d1n

d21, d22, d23, . . . , d2n

d31, d32, d33, . . . , d3n

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

dn1, dn2, dn3, . . . , dnn



, dij =

∫ l

−l
Ei(x)Ej (x) dx. (43)

Using Equations (40)–(43), we obtain

an =
∞∑
j=n

qj
Mnj

Mjj

(44)

with

qj = 1

Nj

∫ l

−l
U(x)Pj (x) dx. (45)

5. Numerical calculations and discussion

Coefficients an and bn can be obtained by solving Equation (40) and the relation bn =
(e15/ε11 − D0µ/ε11T0)an. For a check of the coefficients an, the values of the coefficients
an are given in Table 1 for a/2βl = 0.0005.

From the references (see, e.g., Itou, 1978, 1979; Zhou, 1998, 1999), it can be seen that the
Schmidt method is performed satisfactorily if the first ten terms of infinite series to Equation
(40) are retained. The behavior of the stress stays steady with the increasing number of terms
in (40). Coefficients an and bn are known, so that entire stress field and the electric displace-
ment can be obtainable. However, in fracture mechanics, it is of importance to determine stress
τyz and the electric displacement Dy in the vicinity of the crack’s tips. τyz and Dy along the
crack line can be expressed respectively as
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Figure 2. Antiplane shear stress.

τyz(x, 0) = − 2

π

∞∑
n=1

(c44an + e15bn)Bn

∫ ∞

0
erfc(εs)J2n−1(sl) cos(xs) ds

= − 2µ

π(1 + λ)

∞∑
n=1

anBn

∫ ∞

0
erfc(εs)J2n−1(sl) cos(xs) ds, (46)

Dy(x, 0) = − 2

π

∞∑
n=1

(e15an − ε11bn)Bn

∫ ∞

0
erfc(εs)J2n−1(sl) cos(xs) ds

= −2D0µ

πT0

∞∑
n=1

anBn

∫ ∞

0
erfc(εs)J2n−1(sl) cos(xs) ds = D0

τ0
τyz(x, 0). (47)

So long as ε �= 0, the semi-infinite integration and the series in Equations (46) and (47) are
convergent for any variable x. Equations (46) and (47) give finite stress and electric displace-
ment all along y = 0, so there is no stress singularity at the crack tips. However, for ε = 0,
we have the classical stress singularity at the crack tips. At −l < x < l, τyz/τ0 and Dyτ0/D0

are very close to unity, and for x > l, τyz/τ0 and Dyτ0/D0 possess finite values diminishing
from a finite value at x = l to zero at x = ∞. Since ε/ l > 1/100 represents a crack length
of less than 100 atomic distances (as stated by Eringen, 1979), and such submicroscopic sizes
other serious questions arise regarding the interatomic arrangements and force laws, we do
not pursue solutions valid at such small crack sizes. The semi-infinite numerical integrals,
which occur, are evaluated easily by Filon’s method (see, e.g., Amemiya et al., 1969) and
Simpson’s methods because of the rapid diminution of the integrands. In all computation, the
material constants are not considered because of the stress field does not depend on the ma-
terial constants. The lattice parameter is just considered in this paper. Because the integrands
of Equations (46) and (47) are complex, the stress along the crack face has a slight variation.
Here, we just give the stress field in this paper. The electric displacement field can be obtained
by the stress field using Equation (47). The results are plotted in Figures 2–7.

The following observations are very significant:
(i) For ε �= 0, it can be proved that the semi-infinite integration∫ ∞

0
erfc(εs)J2n−1(sl) cos(xs) ds
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Figure 3. Antiplane shear stress.

Figure 4. Antiplane shear stress.

and the series
∞∑
n=1

anBn

∫ ∞

0
erfc(εs)J2n−1(sl) cos(xs) ds

in Equations (46)–(47) are convergent for any variable x. So the stress and the electric dis-
placement give finite values all along the crack line. Contrary to the classical piezoelectric

Figure 5. Antiplane shear stress.
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Figure 6. Antiplane shear stress.

Figure 7. Antiplane shear stress.

theory solution, it is found that no stress and electric displacement singularity are present at
the crack tip, and also the present results converge to the classical ones when far away from
the crack tip. The maximum stress does not occur at the crack tip, but slightly away from it.
This phenomenon has been thoroughly substantiated by Eringen (Eringen, 1983). The distance
between the crack tip and the maximum stress point is very small and it depends on the crack
length and the lattice parameter.

(ii) The stress at the crack tip becomes infinite as the atomic distance a → 0. This is the
classical continuum limit of square root singularity. This can be shown from Equations (27)–
(30). For a → 0, erfc(εs) = 1, Equations (27)–(30) will reduce to the dual integral equations
for the same problem in classical piezoelectric materials. These dual integral equations can be
solved by using the singular integral equation for the same problem in the local piezoelectric
materials problem. However, the stress and the electric displacement singularity are present at
the crack tip in the local piezoelectric materials problem as well known.

(iii) For the a/β = constant, viz., the atomic distance does not change, the value of the
stress concentrations (at the crack tip) becomes higher with the increase of the crack length
(a/2βl will become smaller with the increase of the crack length l). Note this fact, experiments
indicate that the piezoelectric materials with smaller cracks are more resistant to fracture than
those with larger cracks.
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(iv) The significance of this result is that the fracture criteria are unified at both the macro-
scopic and microscopic scales, viz., it may solve the problem of any scale cracks (it may solve
the problem of any value of a/2βl).

(v) The present results will revert to the classical ones when the introduction function
a(|X′ −X|) = δ(|X′ −X|).

(vi) The stress concentration occurs at the crack tip as stated by Eringen (Eringen, 1978,
1979), and this is given by

τyz(l, 0)/τ0 = c3/
√
a/2βl, (48)

where c3 converges to c3 = 0.383.
(vii) The dimensionless stress field is found to be independent of the electric loads and the

material parameters. They just depend on the length of the crack and the lattice parameter.
However, the electric displacement is found to depend on the stress loads, the length of the
crack and the lattice parameter. The stress field is not coupled with the electric field. This is
consistent with the piezoelectric theory.
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